

Efficient synthesis of bis(indolyl) methanes in aqueous medium catalyzed by molybdenyl acetylacetone

B Banerjee, S K Mandal & S C Roy*

Department of Organic Chemistry, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700 032, India

E-mail: ocscr@iacs.res.in

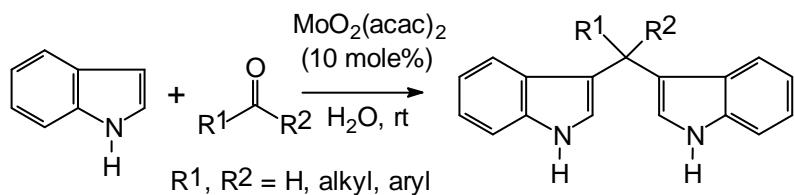
Received 24 April 2006; accepted (revised) 13 November 2006

A mild and efficient electrophilic substitution reaction of indoles with aldehydes and ketones has been carried out in water medium using a catalytic amount of $\text{MoO}_2(\text{acac})_2$ to afford the corresponding bis(indolyl)methanes in excellent yields. Vibrindole A, a bacterial metabolite and biologically active 3,3'-diindolyl methane has been successfully synthesized in excellent yield using this methodology.

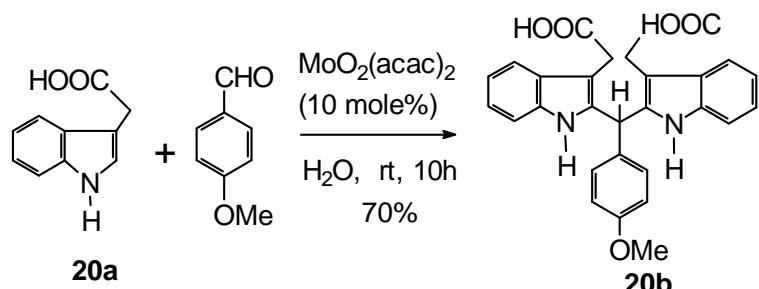
Keywords: Bis(indolyl)methanes, molybdenyl acetylacetone, aqueous medium, carbonyl compounds, catalysis.

IPC: Int.Cl.⁸ C07D

Organic transformations in aqueous medium have become a crucial and demanding research area in modern organic chemical research. In 1980, Breslow discovered that huge rate accelerations occurred when the Diels-Alder reaction was performed in water¹. This observation increased the interest of synthetic organic chemists to analyze organic reactions in water medium. Soon it was discovered that other organic reactions, like the Claisen rearrangement², the aldol condensation³, the benzoin condensation⁴ and the Barbier-Grignard reaction⁵ exhibit rate enhancement in water. To date, many more organic transformations have been carried out in water^{5,6}.


Indoles and their derivatives are used as antibiotics in the field of pharmaceuticals⁷. Due to such potent biological activity exhibited by various indole derivatives, there is a continuous demand for novel synthetic methods in this area. Bis(indolyl)methanes are gaining prominence in view of their occurrence in bioactive metabolites of terrestrial and marine origin⁸. The simple method for the synthesis of this class of compounds involves the electrophilic substitution of indoles with various aldehydes and ketones in the presence of either protic⁹ or Lewis acids¹⁰. Recently, varieties of efficient reagents were also found to catalyze the reaction¹¹. Most of these procedures are associated with certain limitations such as low yields, harsh reaction conditions, long reaction times, expensive or toxic catalysts, and the use of toxic

organic solvents. So, an environmental friendly, more efficient and cost-effective alternative procedure is still desirable. In continuation to our study on $\text{MoO}_2(\text{acac})_2$ catalyzed organic transformations¹², we wish to report herein an efficient synthesis of bis(indolyl)methanes in excellent yields by condensation of indoles with various carbonyl compounds in water.


Results and Discussion

In a typical experiment, a heterogeneous mixture of the carbonyl compound (1 mmole) and indole (2 mmole) in water (4 mL) was stirred in the presence of $\text{MoO}_2(\text{acac})_2$ (0.1 mmole) at room temperature to furnish bis(indolyl)methanes in excellent yields without using any organic solvent (**Scheme I**). Here, the catalyst, $\text{MoO}_2(\text{acac})_2$, acts as a mild Lewis acid which activates the carbonyl group as well as the indole moiety to promote the reaction¹³.

Thus, a series of aldehydes and ketones were subjected to the condensation with indole in water in the presence of a catalytic amount of $\text{MoO}_2(\text{acac})_2$ and the results were summarized in **Table I**. The reaction did not proceed at all without the catalyst in water even on prolonged stirring at room temperature. The generality of the reaction was indicated by the reaction of a variety of substituted aromatic aldehydes **1-9a**, heteroaromatic aldehydes **10a** and **11a**, α,β -unsaturated aldehydes **12a** and **13a** and aliphatic

Scheme I

Scheme II

aldehydes **14-16a** and ketones **17-19a** with indoles. It was found that the aldehydes reacted faster than the ketones and produced better yields of the products. Vibrindole A **15b**, a bacterial metabolite^{8e}, and the biologically active 3,3'-diindolyl methane **14b**, a potent anticarcinogenic agent¹⁴ have been synthesized in excellent yield using this green methodology. Under the above reaction conditions, indole-3-acetic acid **20a** on reaction with *p*-methoxybenzaldehyde furnished the corresponding bis(indolyl)methane **20b**^{11q} in good yield (**Scheme II**). Since the more active site (C-3) was blocked in this case, electrophilic substitution probably took place at C-2 (ref. 11g, q.) There is also a possibility of initial 3-substitution followed by 1,2-migration of the arylalkyl group leading to the desired bis(indolyl)methane^{11d}.

In conclusion, a general protocol for the synthesis of bis(indolyl)methanes has been developed through the electrophilic substitution reaction of indoles with various aldehydes and ketones in water medium catalyzed by $\text{MoO}_2(\text{acac})_2$ in excellent yield. Vibrindole A, a bacterial metabolite and biologically active 3,3'-diindolyl methane have been successfully synthesized in excellent yield using this methodology.

Experimental Section

To a stirred mixture of the carbonyl compound (1 mmole) and indole (2 mmole) in water (4 mL) was

added $\text{MoO}_2(\text{acac})_2$ (0.1 mmole) and the mixture was stirred at room temperature (progress of the reaction was monitored by TLC). The heterogeneous reaction mixture was diluted with diethyl ether and the ether layer was successively washed with water (20 mL), brine (20 mL) and finally dried (Na_2SO_4). Solvent was removed under reduced pressure and the crude product obtained was purified by column chromatography over silica gel (10% ethyl acetate in petroleum ether) to furnish pure bis(indolyl)methanes in excellent yields (**Table I**). The known compounds were identified by comparison of their spectroscopic data (IR, ^1H NMR, ^{13}C NMR) with those reported in the literature. The spectral data and elemental analyses of the new compounds are provided below.

3-[1*H*-indol-3yl(4-methoxyphenyl)methyl]-1*H*-

indole 4b: Crystalline solid, m.p. 187-88°C; IR (KBr): 3396, 3055, 2925, 2831, 1610, 1508, 1456, 1244, 1093, 740 cm^{-1} ; ^1H NMR (CDCl_3): δ 3.77 (s, 3H), 5.82 (s, 1H), 6.59 (s, 2H), 6.81 (d, J = 8.6 Hz, 2H), 6.99 (dd, J = 7.7, 7.3 Hz, 2H), 7.12-7.39 (m, 8H), 7.83 (brs, 2H, NH); ^{13}C NMR (CDCl_3): δ 39.3, 55.2, 111.0, 113.6, 119.2, 119.9, 120.0, 121.9, 123.5, 127.1, 129.6, 136.3, 136.7, 157.9. Anal. Calcd for $\text{C}_{24}\text{H}_{20}\text{N}_2\text{O}$: C, 81.79; H, 5.72; N, 7.95. Found: C, 81.71; H, 5.70; N, 7.90.

3-[1*H*-indol-3yl(2-hydroxyphenyl)methyl]-1*H*-

indole 5b: Crystalline solid, m.p. 348-49°C; IR

Table I - $\text{MoO}_2(\text{acac})_2$ catalyzed synthesis of bis(indolyl)methanes in water

Substrate	Product ^a	Time (min)	Yield ^b	Ref
1a , X = H	1b , X = H	15	97	11e
2a , X = 4-Me	2b , X = 4-Me	20	95	11e
3a , X = 4-Cl	3b , X = 4-Cl	18	94	11h
4a , X = 4-OMe	4b , X = 4-OMe	45	92	11s
5a , X = 2-OH	5b , X = 2-OH	40	93	11s
6a , X = 4-NO ₂	6b , X = 4-NO ₂	20	95	11s
7a , X = 3,4-methylenedioxy	7b , X = 3,4-methylenedioxy	30	91	11e
8a , X = 3,4-dimethoxy	8b , X = 3,4-dimethoxy	20	93	11e
		20	92	11s
9a	9b			
10a , X = O	10b , X = O	25	91	11s
11a , X = S	11b , X = S	30	92	11c
R-CH=CH-CHO				
12a , R = Ph	12b , R = Ph	55	88	11s
13a , R = Me	13b , R = Me	45	83	11s
R-CHO				
14a , R = H	14b , R = H	12	91	11s
15a , R = Me	15b , R = Me	20	90	11s
16a , R = C ₅ H ₁₁	16b , R = C ₅ H ₁₁	30	93	11e
17a , R ¹ = R ² = Me	17b , R ¹ = R ² = Me	180	82	11g
18a , R ¹ , R ² = -(CH ₂) ₅ -	18b , R ¹ , R ² = -(CH ₂) ₅ -	150	86	11e
19a , R ¹ = Ph, R ² = Me	19b , R ¹ = Ph, R ² = Me	480	71	11g

^aAll the products gave satisfactory spectral and analytical data.^bYields refer to pure isolated products.

(KBr): 3417, 3305, 3057, 2976, 2875, 1593, 1454, 1095, 742 cm^{-1} ; ^1H NMR (CDCl_3): δ 5.60 (brs, OH), 6.05 (s, 1H), 6.67 (s, 2H), 6.90 (d, J = 6.8 Hz, 2H), 7.07 (t, J = 6.5 Hz, 2H), 7.22-7.36 (m, 6H), 7.44 (d, J = 7.1 Hz, 2H), 7.90 (brs, 2H, NH); ^{13}C NMR (CDCl_3): δ 35.7, 111.3, 116.6, 117.1, 119.5, 119.9, 120.8, 122.3, 123.7, 126.8, 128.0, 129.2, 130.0, 136.9, 154.4. Anal. Calcd for $\text{C}_{23}\text{H}_{18}\text{N}_2\text{O}$: C, 81.63; H, 5.36; N, 8.28. Found: C, 81.52; H, 5.32; N, 8.27.

3-[1*H*-indol-3-yl(4-nitrophenyl)methyl]-1*H*-indole

6b: Crystalline solid, m.p. 223-24°C; IR (KBr): 3456, 3421, 3386, 1593, 1508, 1456, 1340, 746 cm^{-1} ; ^1H NMR (CDCl_3): δ 5.91 (s, 1H), 6.61 (d, J = 2.3 Hz, 2H), 6.95 (t, J = 7.9 Hz, 2H), 7.09-7.32 (m, 6H), 7.45 (d, J = 8.6 Hz, 2H), 7.95 (brs, 2H, NH), 8.06 (d, J = 8.8 Hz, 2H); ^{13}C NMR (CDCl_3): δ 40.2, 111.2, 118.1, 119.5, 119.6, 122.3, 123.6, 126.6, 129.5, 136.7, 151.8. Anal. Calcd for $\text{C}_{23}\text{H}_{17}\text{N}_3\text{O}_2$: C, 75.19; H, 4.66; N, 11.44. Found: C, 75.08; H, 4.60; N, 11.32.

3-[1*H*-indol-3-yl(1-naphthyl)methyl]-1*H*-indole

9b: Crystalline solid, m.p. 252-53°C; IR (KBr): 3409, 3055, 2922, 2846, 1595, 1456, 1336, 1089, 742 cm^{-1} ; ^1H NMR (CDCl_3): δ 6.58 (s, 1H), 6.66 (s, 1H), 6.99 (t, J = 7.3 Hz, 2H), 7.18 (t, J = 7.8 Hz, 2H), 7.24-7.46 (m, 9H), 7.24 (s, 1H), 7.73 (d, J = 7.7 Hz, 1H), 7.89 (brs, 2H, NH), 8.15 (d, J = 8.3 Hz, 1H); ^{13}C NMR (CDCl_3): δ 36.1, 111.3, 119.6, 119.7, 120.2, 122.3, 124.6, 125.6, 125.8, 126.1, 127.3, 127.4, 128.9, 134.3, 137.0. Anal. Calcd for $\text{C}_{27}\text{H}_{20}\text{N}_2$: C, 87.07; H, 5.41; N, 7.52. Found: C, 87.01; H, 5.34; N, 7.50.

3-[2-furyl(1*H*-indol-3-yl)methyl]-1*H*-indole 10b:

Crystalline solid, m.p. 323-25°C; IR (KBr): 3411, 3305, 2976, 2871, 1620, 1456, 1338, 1008, 742 cm^{-1} ; ^1H NMR (CDCl_3): δ 5.97 (s, 1H), 6.09 (d, J = 2.5 Hz, 1H), 6.33 (dd, J = 1.8, 2.9 Hz, 1H), 6.82 (s, 2H), 7.05-7.39 (m, 7H), 7.52 (d, J = 8.0 Hz, 2H), 7.88 (brs, 2H, NH); ^{13}C NMR (CDCl_3): δ 34.4, 106.9, 110.5, 111.5, 117.4, 119.7, 120.0, 122.3, 123.4, 127.1, 136.8, 141.6, 157.5. Anal. Calcd for $\text{C}_{21}\text{H}_{16}\text{N}_2\text{O}$: C, 80.75; H, 5.16; N, 8.97. Found: C, 80.70; H, 5.11; N, 8.91.

3-[(2*E*)-1-(1*H*-indol-3-yl)-3-phenylprop-2-enyl]-1*H*-indole 12b:

Crystalline solid, m.p. 98-99°C; IR (KBr): 3411, 3057, 3010, 2873, 1620, 1456, 1217, 1095, 744 cm^{-1} ; ^1H NMR (CDCl_3): δ 5.39 (d, J = 7.0 Hz, 1H), 6.50-6.62 (m, 1H), 6.79 (dd, J = 7.0, 15.8 Hz, 1H), 6.86 (s, 2H), 6.90-7.45 (m, 12H), 7.59 (d, J = 7.8 Hz, 1H), 7.90 (brs, 2H, NH); ^{13}C NMR (CDCl_3): δ 37.4, 110.9, 111.0, 118.3, 119.1, 119.2, 119.9, 121.8, 122.5, 123.5, 126.1, 126.3, 126.9, 128.1, 128.3, 128.4, 128.6, 129.9, 132.3, 136.6, 137.7. Anal. Calcd

for $\text{C}_{25}\text{H}_{20}\text{N}_2$: C, 86.17; H, 5.79; N, 8.04. Found: C, 86.10; H, 5.75; N, 7.99.

3-[(2*E*)-1-(1*H*-indol-3-yl)but-2-enyl]-1*H*-indole

13b: Crystalline solid, m.p. 130-31°C; IR (KBr): 3417, 3055, 2962, 1651, 1456, 1166, 740 cm^{-1} ; ^1H NMR (CDCl_3): δ 1.60 (d, J = 7.0 Hz, 3H), 3.94-3.98 (m, 1H), 6.46 (dd, J = 16.0, 6.8 Hz, 1H), 6.69 (d, J = 16.0 Hz, 1H), 7.05-7.21 (m, 6H), 7.35 (t, J = 7.8 Hz, 2H), 7.74 (d, J = 7.8 Hz, 1H), 7.85 (d, J = 7.7 Hz, 1H), 8.00 (brs, 2H, NH); ^{13}C NMR (CDCl_3): δ 14.2, 31.9, 111.0, 118.9, 119.0, 119.2, 119.7, 119.8, 120.3, 121.5, 121.7, 122.5, 126.8, 127.1, 136.5, 136.6. Anal. Calcd for $\text{C}_{20}\text{H}_{18}\text{N}_2$: C, 83.88; H, 6.34; N, 9.78. Found: C, 83.77; H, 6.30; N, 9.75.

3-(1*H*-indol-3-ylmethyl)-1*H*-indole 14b:

Crystalline solid, m.p. 163-64°C; IR (KBr): 3396, 2831, 1618, 1454, 1340, 1089, 740 cm^{-1} ; ^1H NMR (CDCl_3): δ 4.22 (s, 2H), 6.88 (s, 2H), 7.05-7.22 (m, 4H), 7.31 (d, J = 8.1 Hz, 2H), 7.61 (d, J = 7.8 Hz, 2H), 7.82 (brs, 2H, NH); ^{13}C NMR (CDCl_3): δ 21.0, 110.9, 115.5, 119.0, 119.1, 121.7, 122.0, 127.4, 136.3. Anal. Calcd for $\text{C}_{17}\text{H}_{14}\text{N}_2$: C, 82.90; H, 5.73; N, 11.37. Found: C, 82.81; H, 5.70; N, 11.29.

3-[1-(1*H*-indol-3-yl)ethyl]-1*H*-indole 15b:

Crystalline solid, m.p. 154-55°C; IR (KBr): 3411, 3057, 2966, 2869, 1618, 1456, 1338, 1095, 740 cm^{-1} ; ^1H NMR (CDCl_3): δ 1.78 (d, J = 7.0 Hz, 3H), 4.65 (q, J = 7.0 Hz, 1H), 6.86 (s, 2H), 7.00-7.22 (m, 4H), 7.30 (d, J = 7.3 Hz, 2H), 7.56 (d, J = 7.9 Hz, 2H), 7.81 (brs, 2H, NH); ^{13}C NMR (CDCl_3): δ 21.7, 28.2, 111.1, 119.0, 119.7, 121.2, 121.7, 121.8, 126.9, 136.6. Anal. Calcd for $\text{C}_{18}\text{H}_{16}\text{N}_2$: C, 83.04; H, 6.19; N, 10.76. Found: C, 82.97; H, 6.14; N, 10.70.

3-[1-(1*H*-indol-3-yl)methyl]-1-methylethyl]-1*H*-indole

17b: Viscous liquid; IR (neat): 3406, 2960, 1620, 1456, 1332, 1099, 744 cm^{-1} ; ^1H NMR (CDCl_3): 1.89 (s, 6H), 6.87 (t, J = 7.1 Hz, 2H), 6.98 (d, J = 2.4 Hz, 2H), 7.06 (dd, J = 7.1, 8.0 Hz, 2H), 7.26 (d, J = 8.1 Hz, 2H), 7.40 (d, J = 8.0 Hz, 2H), 7.77 (brs, 2H, NH); ^{13}C NMR (CDCl_3): δ 30.0, 34.9, 111.1, 118.7, 120.6, 121.3, 121.4, 125.5, 126.3, 137.1. Anal. Calcd for $\text{C}_{19}\text{H}_{18}\text{N}_2$: C, 83.18; H, 6.61; N, 10.21. Found: C, 83.11; H, 6.58; N, 10.15.

3-[1-(1*H*-indol-3-yl)-1-phenylethyl]-1*H*-indole

19b: Viscous liquid; IR (neat): 3415, 3004, 2977, 1456, 1336, 1217, 1099, 744 cm^{-1} ; ^1H NMR (CDCl_3): δ 2.35 (s, 3H), 6.60 (d, J = 2.4 Hz, 2H), 6.92 (t, J = 7.4 Hz, 2H), 7.05-7.40 (m, 11H), 7.86 (brs, 2H); ^{13}C NMR (CDCl_3): δ 28.7, 65.9, 111.1, 118.9, 121.5, 122.0, 123.4, 124.7, 125.8, 126.4, 127.8, 128.1, 137.1,

148.0. Anal. Calcd for $C_{24}H_{20}N_2$: C, 85.68; H, 5.99; N, 8.33. Found: C, 85.61; H, 5.91; N, 8.28.

Acknowledgement

We thank DST, New Delhi for financial support. Authors B B and S K M thank CSIR, New Delhi for awarding the fellowships.

References

- 1 Rideout D C & Breslow R, *J Am Chem Soc*, 102, **1980**, 7816.
- 2 Grieco P A, Brandes E B, McCann S & Clark J D, *J Org Chem*, 54, **1989**, 5849.
- 3 Lubineau A & Meyer E, *Tetrahedron*, 44, **1988**, 6065.
- 4 Breslow R, *Acc Chem Res*, 24, **1991**, 159.
- 5 Li C J, *Chem Rev*, 93, **1993**, 2023.
- 6 (a) Grieco P A, *Organic Synthesis in Water*; Blacky: London, **1998**.
(b) Li C J & Chan T H, *Organic Reactions in Aqueous Media*; Wiley: New York, **1997**.
- 7 Sundberg R J, *The Chemistry of Indoles*; Academic Press: New York, **1970**.
- 8 (a) Porter J K, Bacon C W, Robins J D, Himmelsbach D S & Higman H C, *J Agric Food Chem*, 25, **1977**, 88.
(b) Osawa T & Namiki M, *Tetrahedron Lett*, 24, **1983**, 4719.
(c) Fahy E, Potts B C M, Faulkner D J & Smith K, *J Nat Prod*, 54, **1991**, 564.
(d) Bifulco G, Bruno I, Riccio R, Lavayre J & Bourdy G, *J Nat Prod*, 58, **1995**, 1254.
(e) Bell R, Carmeli S & Sar N, *J Nat Prod*, 57, **1994**, 1587.
(f) Garbe T R, Kobayashi M, Shimizu N, Takesue N, Ozawa M & Yukawa H, *J Nat Prod*, 63, **2000**, 596.
- 9 (a) Roomi M W & MacDonald S F, *Can J Chem*, 48, **1970**, 139.
(b) Gregorovich B V, Liang K S Y, Clugston D M & MacDonald S F, *Can J Chem*, 46, **1968**, 3291.
- 10 (a) Noland W E, Venkateswaran M R & Richards C G, *J Org Chem*, 26, **1961**, 4241.
(b) Banerji J, Chatterjee A, Manna S, Pascard C, Prange T & Shoolery J, *Heterocycles*, 15, **1981**, 325.
(c) Chatterjee A, Manna S, Banerji J, Pascard C, Prange T & Shoolery J N, *J Chem Soc, Perkin Trans I*, **1980**, 553.
- 11 (a) Chen D, Yu L & Wang P G, *Tetrahedron Lett*, 37, **1996**, 4467.
(b) Nagarajan R & Perumal P T, *Tetrahedron*, 58, **2002**, 1229.
- 12 Rana K K, Guin C, Jana S & Roy S C, *Tetrahedron Lett*, 44, **2003**, 8597.
- 13 (a) Maignien S, Ait-Mohand S & Muzart J, *Synlett*, **1996**, 439.
(b) Kantam M L, Prasad A D & Santhi P L, *Synth Commun*, 23, **1993**, 45.
(c) Kantam M L & Santhi P L, *Synth Commun*, 23, **1993**, 2225.
(d) Kantam M L & Santhi P L, *Synlett*, **1993**, 429.
(e) Kantam M L, Swapna V & Santhi P L, *Synth Commun*, 25, **1995**, 2529.
- 14 Hong C, Firestone G L & Bjeldanes L F, *Biochem Pharmacol*, 63, **2002**, 1085.
- 15 Maiti A K & Bhattacharyya P, *J Chem Res (S)*, **1997**, 424.
- 16 Chakrabarty M, Ghosh N, Basak R & Harigaya Y, *Tetrahedron Lett*, 43, **2002**, 4075.
- 17 Yadav J S, Subba Reddy B V, Murthy C V S R, Mahesh Kumar G & Madan C, *Synthesis*, **2001**, 783.
- 18 Koshima H & Matsusaka W, *J Heterocycl Chem*, 39, **2002**, 1089.
- 19 Bandgar B P & Shaikh K A, *Tetrahedron Lett*, 44, **2003**, 1959.
- 20 Shun-Jun J, Min-Feng Z, Da-Gong G, Shun-Yi W & Teck-Peng L, *Synlett*, **2003**, 2077.
- 21 Yadav J S, Subba Reddy B V & Sunitha S, *Advanced Synthesis and Catalysis*, 345, **2003**, 349.
- 22 Ji S-J, Zhou M-F, Gu D-G, Jiang Z-Q & Loh T-P, *Eur J Org Chem*, **2004**, 1584.
- 23 Gu D-G, Ji S-J, Jiang Z-Q, Zhou M-F & Loh T-P, *Synlett*, **2005**, 959.
- 24 Ramesh C, Ravindranath N & Das B, *J Chem Res (S)*, **2003**, 72.
- 25 Reddy A V, Ravinder K, Reddy V L N, Goud T V, Ravikanth V & Venkateswarlu Y, *Synth Commun*, 33, **2003**, 3687.
- 26 Li J, Zhou M, Li B & Zhang G, *Synth Commun*, 34, **2004**, 275.
- 27 Ramesh C, Banerjee J, Pal R & Das B, *Advanced Synthesis and Catalysis*, 345, **2003**, 557.
- 28 Nagarajan R & Perumal P T, *Chemistry Letters*, 33, **2004**, 288.
- 29 Sharma G V M, Reddy J J, Sree Lakshmi P & Radha Krishna P A, *Tetrahedron Lett*, 45, **2004**, 7729.
- 30 Wang L, Han J, Tian H, Sheng J, Fan Z & Tang X, *Synlett*, **2005**, 337.
- 31 Kamal A & Qureshi A A, *Tetrahedron*, 19, **1963**, 513.